Повышение энергоэффективности водоснабжения за счет внедрения высоковольтных станций частотного управления насосными агрегатами.

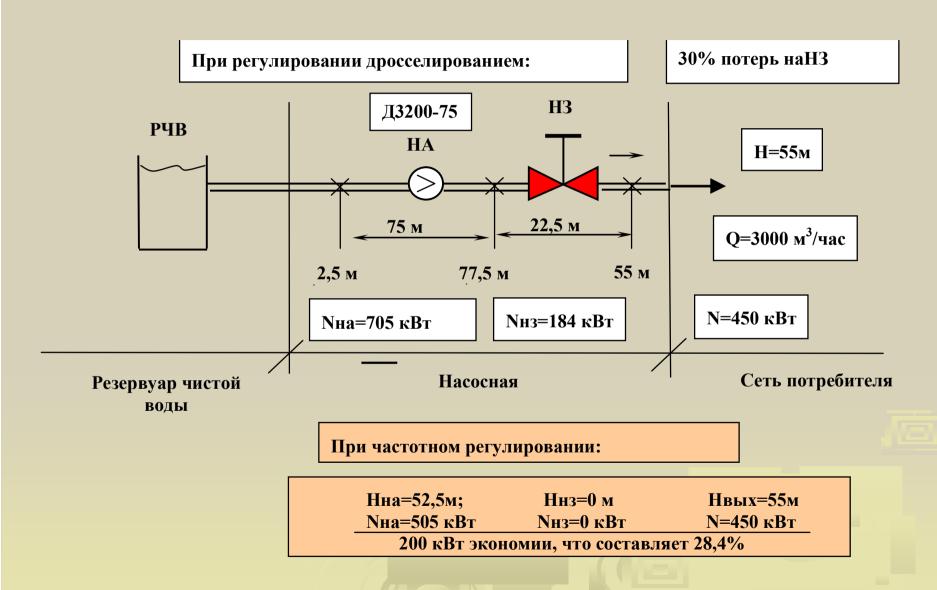
Усачев А.П.

г. НОВОСИБИРСК, ООО «Сибирь-мехатроника»

Содержание

- > 1. Актуальность внедрения высоковольтных станций
- > частотного управления насосными агрегатами.
- 2. Схемы построения высоковольтных преобразователей частоты.
- > 3. Схемы включения ВПЧ.
- > 4. Варианты установки ВПЧ на насосные станции.
- > 5. Параллельная работа НА с ЧР и без ЧР.
- > 6.Серия ВСЧ500.
- > 7.Фото.

Проблема **повышения энергоэффективности технологического оборудования**, потребляющего электроэнергию, всегда была актуальной, а сегодня она приобрела государственный статус в связи с соответствующим постановлением правительства.


Существенная доля потребления электроэнергии в хозяйстве водоканалов крупных городов *приходится на магистральные* насосные станции водоснабжения города. В большинстве случаев они оснащены насосными агрегатами с электродвигателями напряжением 6,0-10 кВ и мощностью 315÷2500 кВт.

Традиционно регулирование параметров водоснабжения на них осуществляется **путем дросселирования**.

В результате, непроизводительные затраты электроэнергии в отдельных случаях составляют до 30-40%.

Известно, что существенное их снижение достигается путем замены регулирования дросселированием на частотное регулирование.

Принцип повышения энергоэффективности работы насосной станции

Основные магистральные насосные станции (г. Новосибирск)

НС-2 НФС-3 (стадия внедрения ВСЧ: СМР)

Nº	Марка насоса	Марка электродвигателя	Кол-во								
	18НДС (Д2500-62) (Q= 2500, H=62)	А 13-37-6(985об 500кВт)	6								
Усредненные режимы в сутки (будни)											
	6 час/сут: в раб 2 НА; H = 25м 8 час/сут: в раб 3 НА; H = 45м 10 час/сут: в раб 4 НА; H = 60м	Потери на H3 = 37м (59,7%) Потери на H3 = 17м (27,4%) Потери на H3 = 2м (3,2%)	25,4% (средн. в сутки)								

НС-3 НФС-3 (стадия внедрения ВСЧ: ПСД)

№ п/п	Марка насоса	Марка электродвигателя	Кол-во								
	28M12×2 (ЦН3000) (Q= 3500, H= 170)	СДН 15-64-6 (2500 кВт)	5								
	Усредненные режимы	в сутки (будни)									
	6 час/сут: в раб 3 HA; H = 80м 8 час/сут: в раб 3 HA; H = 87м 10 час/сут: в раб 3 HA; H = 110м	Потери на НЗ = 90м (52,9%) Потери на НЗ = 83м (48,8%) Потери на НЗ = 60м (35,3%)	44,2% (средн. в сутки)								
Рассматривается вопрос реконструкции насосов											

Основные магистральные насосные станции (г. Новосибирск) **НС-2 НФС-1** *(стадия внедрения ВСЧ: ПСД)*

№	Марка насоса	Марка электродвигателя	Кол-во
	$Д 4000 - 95 (Q = 4000 \text{ м}^3/\text{ч}, H = 95 \text{ м})$	СДН-2-16-59-6У3 (N= 1600 кВт)	5
	$Д 2000-100 (Q=2000 \text{ м}^3/\text{ч}, H=100 \text{ м})$	2АДР-800-6000-6У3 (N= 800 кВт)	2
	Усредненные ре	ежимы в сутки (будни)	
	6 час/сут: в раб 2 НА; H = 45м 8 час/сут: в раб 2 НА; H = 60м 10 час/сут: в раб 2-3 НА; H = 77м	Потери на НЗ = 50м (52,6%) Потери на НЗ = 35м (36,8%) Потери на НЗ = 18м (19,0%)	33,3% (средн. в сутки)

НС-2 НФС-2 (стадия внедрения ВСЧ: ПСД)

Nº	Марка насоса	Марка электродвигателя	Кол-во
1.	18HДC(Д2500-62) (Q= 2500, H= 62)	А13-37-6 (985об 500кВт)	2
2.	300Д90 (Q= 1080, H= 90)	А114-4 (1480об 320кВт)	6
2a.	Планируется вместо 300Д90 установить 3 шт. 18НДС(Д2500-62)	А13-37-6 (985об 500кВт)	3
	Усредненные реж	имы в сутки (будни)	
	6 час/сут: в раб 1 HA; H = 35м 8 час/сут: в раб 2 HA; H = 50м 10 час/сут: в раб 2 HA; H = 60м	Потери на $H3 = 27 \text{м} (43,5\%)$ Потери на $H3 = 12 \text{м} (19,35\%)$ Потери на $H3 = 2 \text{м} (3,2\%)$	18,7% (средн. в сутки)

Основные магистральные насосные станции (г. Новосибирск)

НС-4 НФС-3 (стадия внедрения ВСЧ: внедрена в 2008г.)

№ п/п	Марка насоса	Марка электродвигателя	Кол-во		
	18НДС (Д2700-58) (Q= 2700 , H= 58)	А 13-37-6(985об 500кВт)	5		
	Усредненные режим	ны в сутки (будни)			
	6 час/сут: в раб 1 НА; Н = 45м (40)	Потери на $H3 = 13$ м (22,4%)	20.20/		
	8 час/сут: в раб 2 НА; Н = 45м (43)	Потери на НЗ = 13м (22,4%)	20,2% (средн. в сутки)		
	10 час/сут: в раб 2 HA; H = 48м (45)	Потери на H3 = 10м (17,2%)	2 0) 11(1)		

высоковольтная станция частотного управления внедрена в 2008г. :

ВСЧУ=ВПЧ-ДТС (1шт)+СР200(2шт)+СТК500+Компл. дат.: Эк.эл.эн.=17,0%; Эк.по воде=20%

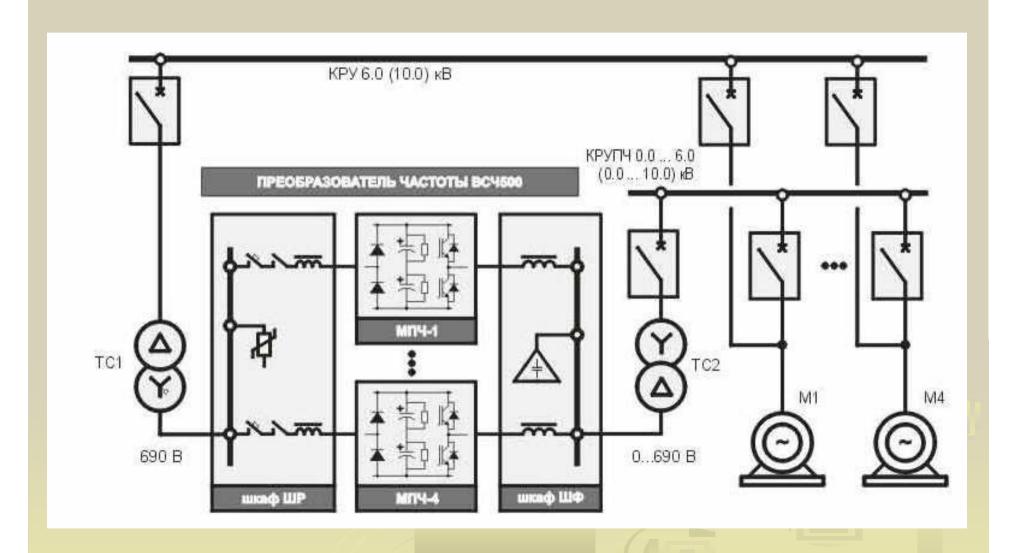
город, объект	тип ВПЧ	год	эл.эн.//вода	окуп-ть		
г. Благовещенск						
1. Амурский водозабор (ВНС-2)	ВСЧ500-ДТС-06-800(кВт)	с 2006г.	30% // -	1 г. и 4 мес.		
2. Северный водозабор (ВНС-2)	ВСЧ500-ДТС-06-500(кВт)	с 2006г.	30% // -	1 г. и 4 мес.		
г. Барнаул						
3. ГНС	ВСЧ500-ДТС-06-500(кВт)	с 2007г.	30% // -	1 г. и 6 мес.		
г. Новосибирск						
4. ВНС-4 НФС-3	ВСЧ500-ДТС-06-500(кВт)	с 2008г.	17% // 20%	около 2-х лет		
г.Семипалатинск (Казахстан)						
5. ГКНС	ВСЧ500-ДТС-06-400(кВт)	СМР	до 30%	около 2-х лет		
6. ОСК (нагнетатель)			до 30%	около 2-х лет		
7. Водозабор «Свобода» (ВНС-2)	ВСЧ500-ДТС-06-320(кВт)	c 11.2009	37% // 27%	около 2-х лет		
8. Водозабор «Смычка» (ВНС-2)	ВСЧ500-ДТС-06-320(кВт)	c 11.2009	37% // 27%	около 2-х лет		
9. Водозабор «Большой» (ВНС-2)	ВСЧ500-ДТС-06-320(кВт)	c 11.2009	37% // 27%	около 2-х лет		
г.Новосибирск						
10. Гортеплоэнерго, ПНС-10	ВПЧА-10кВ-1000кВт (6шт)	c 09.2009	до 30%			

В последнее время уровень развития силовой электроники значительно продвинулся в области больших мощностей. В результате серийно выпускаются преобразователи частоты (ПЧ) для управления электродвигателями переменного тока на 6,0 кВ; 10,0 кВ мощностью до 5000 кВт и выше.

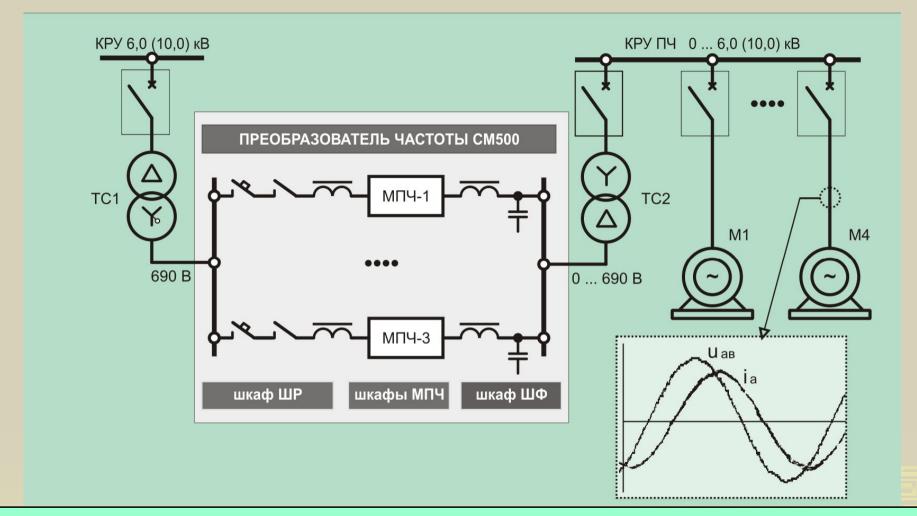
Для рассматриваемой области применения наибольшее распространение получили **две схемы** построения высоковольтных преобразователей частоты.

Это преобразователи частоты, выполненные по двухтрансформаторной схеме и многоуровневые ПЧ с одним специальным трансформатором.

Основные варианты ПЧ для электродвигателей 6,0; 10,0 кВ; 250÷2500 кВт


Двухтрансформаторная схема (до 1000 (1250) кВт)

- 1. Отсутствие специальных требований к электродвигателю и кабелю
- 2. Возможность «удаленного» расположения трансформаторов
- 3. Возможность установки преобразователя частоты в низковольтном электропомещении
- 4. Возможность обслуживания персоналом с допуском до 1000 В
- 5. Низкая цена по сравнению с другими вариантами

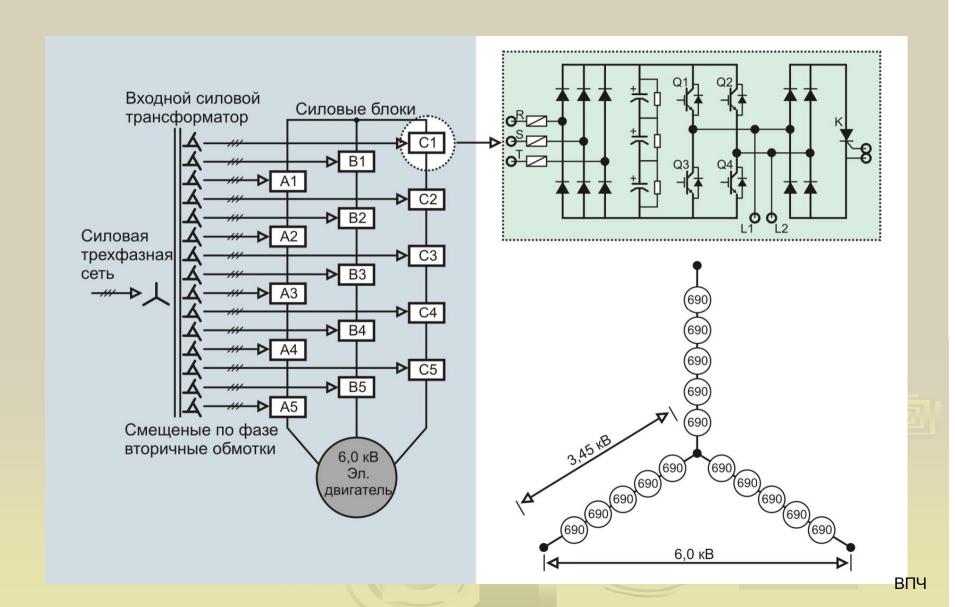

Однотрансформаторная схема (на базе низковольтных «Н»-мостов) до 5000 кВт

- 1. Высококачественная электромагнитная совместимость с сетью (эквивалентная 18÷ 30-ти пульсная схема выпрямления)
- 2. Нет специальных требований к электродвигателю и кабелю
- 3. Диапазон мощностей до 5000 кВт
- 4. Более компактный по сравнению с двухтрансформаторной схемой
- 5. Возможность управления как АД, так и СД

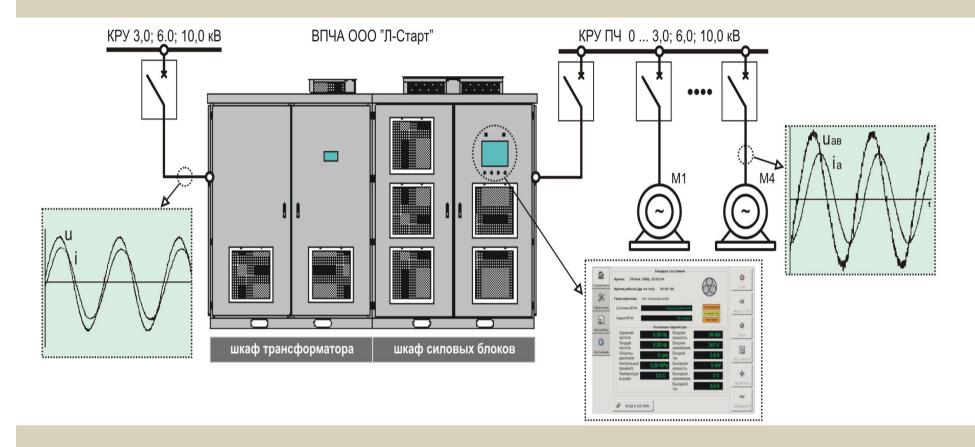
Двухтрансформаторная схема ВПЧ (ДТС)

Двухтрансформаторная схема ВПЧ (ДТС)

- 1. Отсутствие специальных требований к электродвигателю и кабелю
- 2. Возможность «удаленного» расположения трансформаторов
- 3. Возможность установки преобразователя частоты в низковольтном электропомещении
- 4. Возможность обслуживания персоналом с допуском до 1000 В
- 5. Низкая цена по сравнению с другими вариантами


ВСЧ500-ДТС (2-х трансформаторная схема)

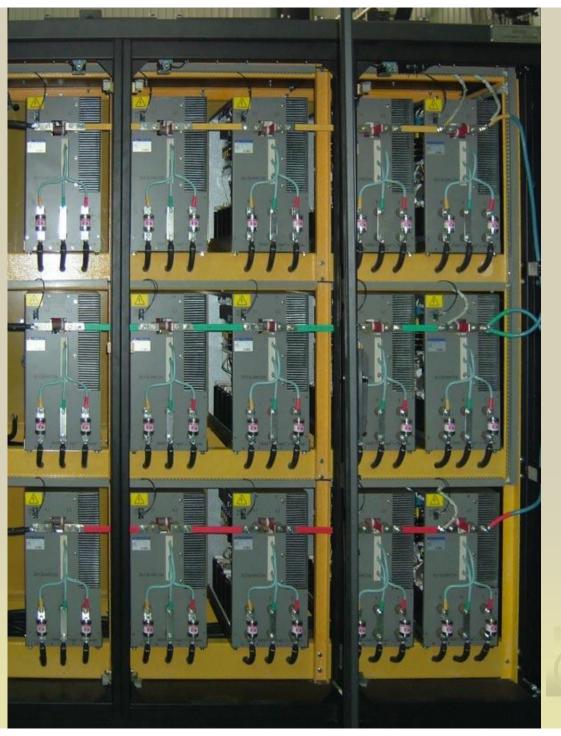
ВЫСОКОВОЛЬТНЫЕ СТАНЦИИ ЧАСТОТНОГО УПРАВЛЕНИЯ



Многоуровневая схема на базе однофазных «Н-мостах» -1-

Многоуровневая схема на базе однофазных «Н-мостах» -2-

- 1. Высококачественная электромагнитная совместимость с сетью (эквивалентная 18÷ 30-ти пульсная схема выпрямления)
- 2. Нет специальных требований к электродвигателю и кабелю
- 3. Диапазон мощностей до 5000 кВт
- 4. Более компактный по сравнению с двухтрансформаторной схемой
- 5. Возможность управления как АД, так и СД



ВСЧ500-ВПЧА(С)

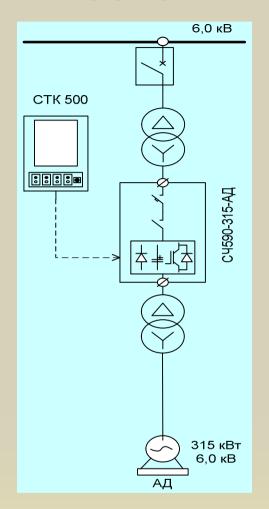
(многоуровневый ШИМ)

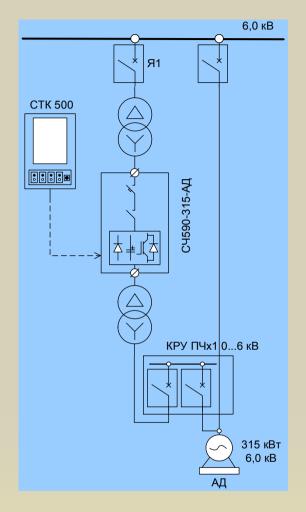
Шкаф высоковольтного преобразователя

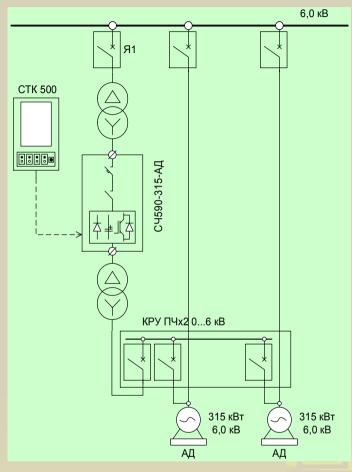
					Mo	ощнос	тной	ряд в	ысоко	вольт	гных (танці	ий час	готног	о упр	авлен	ия		
:БИЯ:	Мощность, кВт	75	90	110	132	250	320	200	630	800	1000	1250	1400	1600	2000	2500	3150	4000	5000
	ВСЧ500-ВПЧА					•	•	•	•	•	•	•	•	•	•	•	•	•	•
	всч500-впчс									•	•	•	•	•	•	•	•	•	•

Шкаф силовых модулей (однофазных «Н-мостов»)

Основные варианты ПЧ для электродвигателей 6,0; 10,0 кВ; 250÷2500 кВт

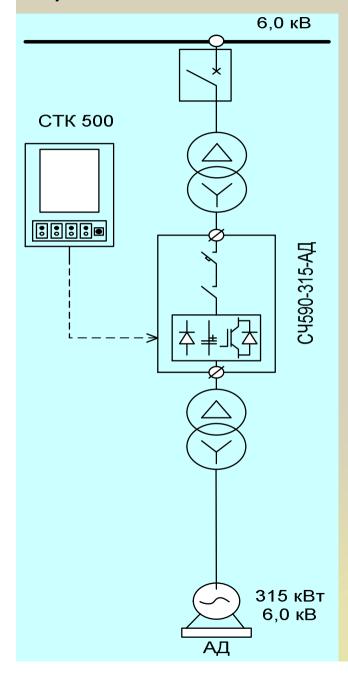

Двухтрансформаторная схема (до 1000 (1250) кВт)


- 1. Отсутствие специальных требований к электродвигателю и кабелю
- 2. Возможность «удаленного» расположения трансформаторов
- 3. Возможность установки преобразователя частоты в низковольтном электропомещении
- 4. Возможность обслуживания персоналом с допуском до 1000 В
- 5. Низкая цена по сравнению с другими вариантами


Однотрансформаторная схема (на базе низковольтных «Н»-мостов) до 5000 кВт

- 1. Высококачественная электромагнитная совместимость с сетью (эквивалентная 18÷ 30-ти пульсная схема выпрямления)
- 2. Нет специальных требований к электродвигателю и кабелю
- 3. Диапазон мощностей до 5000 кВт
- 4. Более компактный по сравнению с двухтрансформаторной схемой
- 5. Возможность управления как АД, так и СД

ОСНОВНЫЕ БАЗОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ ВПЧ


Включение последовательно в цепь питания (включение «в разрыв» цепи) (включение с «байпасом»)

Подключение параллельно существующей цепи

Групповое подключение (к двум насосным агрегатам)

Схемы включения

включение «в разрыв» цепи питания

Схема обеспечивает работу насосного агрегата только от преобразователя частоты.

Поэтому, чтобы обеспечить работу НА при выходе из строя ВПЧ, схема оставляет только один вариант - отключить ВПЧ по входу и выходу и подключить электродвигатель непосредственно к выходы питающей ячейки.

Не смотря на, казалось бы, абсурдность варианта, он находит достаточно широкое применение на практике (для этого заранее предусматривается соответствующий запас кабеля).

включение с «байпасом»

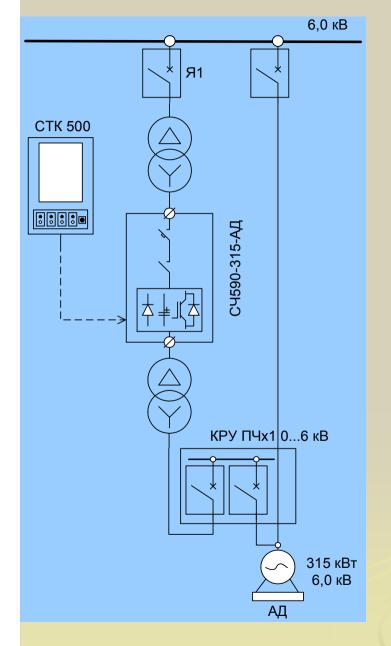


Схема обеспечивает резервирование питания электродвигателя либо от преобразователя частоты, либо непосредственно от сети.

Цена резервирования – три высоковольтные ячейки и дополнительный монтаж.

Схема требует не только дополнительных затрат, но и дополнительных площадей в высоковольтной зоне. Именно поэтому зачастую используется первая схема.

Групповое подключение (к двум насосным агрегатам)

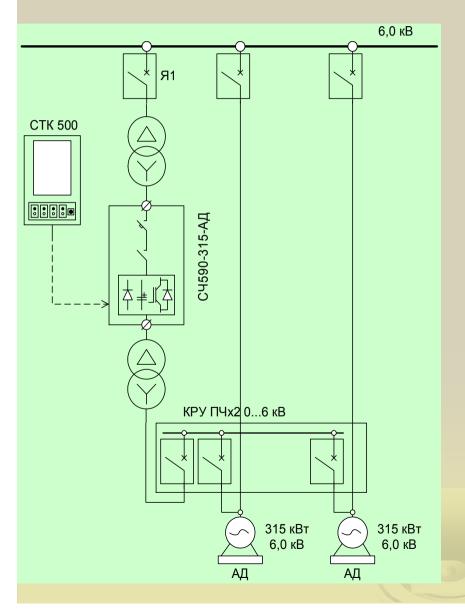


Схема соответствует групповому подключению ВПЧ, на два, на три или более насосных агрегатов.

Каждый из электродвигателей может быть подключен либо к ВПЧ, либо непосредственно к сети, но к ВПЧ - только один электродвигатель. Схема обеспечивает и резервирование цепей питания электродвигателя, и резервирование насосных агрегатов и, кроме того, каскадное их управление от одного ВПЧ.

Схема безусловна наиболее гибкая и соответственно находит довольно широкое применение, прежде всего из соображений обеспечения резервирования.

ВАРИАНТЫ УСТАНОВКИ ВПЧ НА НАСОСНУЮ СТАНЦИЮ

Магистральные насосные станции содержат, как правило, **по 4...8 насосных агрегатов**, а в некоторых случаях и больше.

Высоковольтные преобразователи частоты имеют на сегодня достаточно большие габариты и высокие цены.

Данные обстоятельства, естественно порождают *сакраментальный* **вопрос**, возникающий при внедрении частотного регулирования, - *сколько ВПЧ ставить на насосную станцию?*

Если исходить только *из технической целесообразности*, то ответ простой – *по числу насосных агрегатов*,

т.е. на каждый агрегат свой ВПЧ (либо первая, либо вторая схема рис. 3)

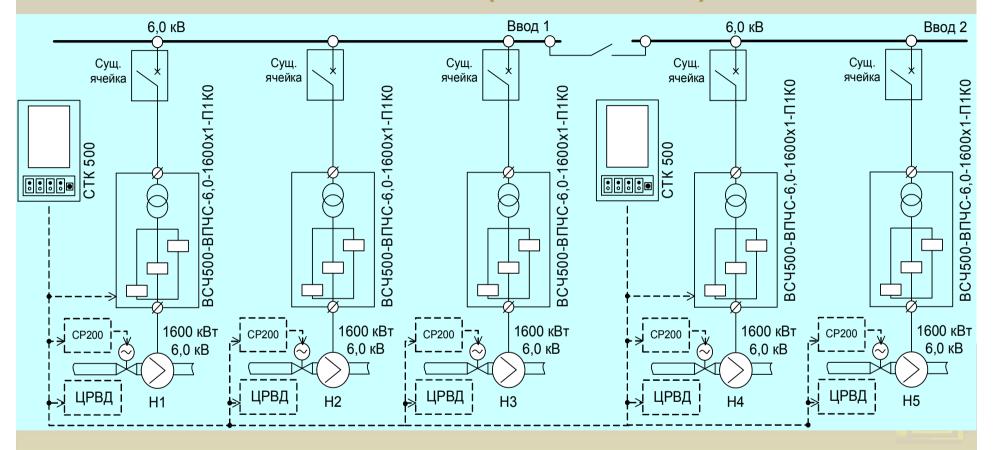
...Однако практически он реализуем только для строящихся новых насосных станций, т.к. *тебует достаточно больших дополнительных площадей.* Из всех вышеприведенных внедрений (таблица 1) этот вариант *был реализован только на ПНС-10* (в таблице поз. №10). Здесь на этапе проектирования была заложена вторая схема рис.3 на каждый агрегат (шесть электродвигателей по 10кВ, 1000кВт).

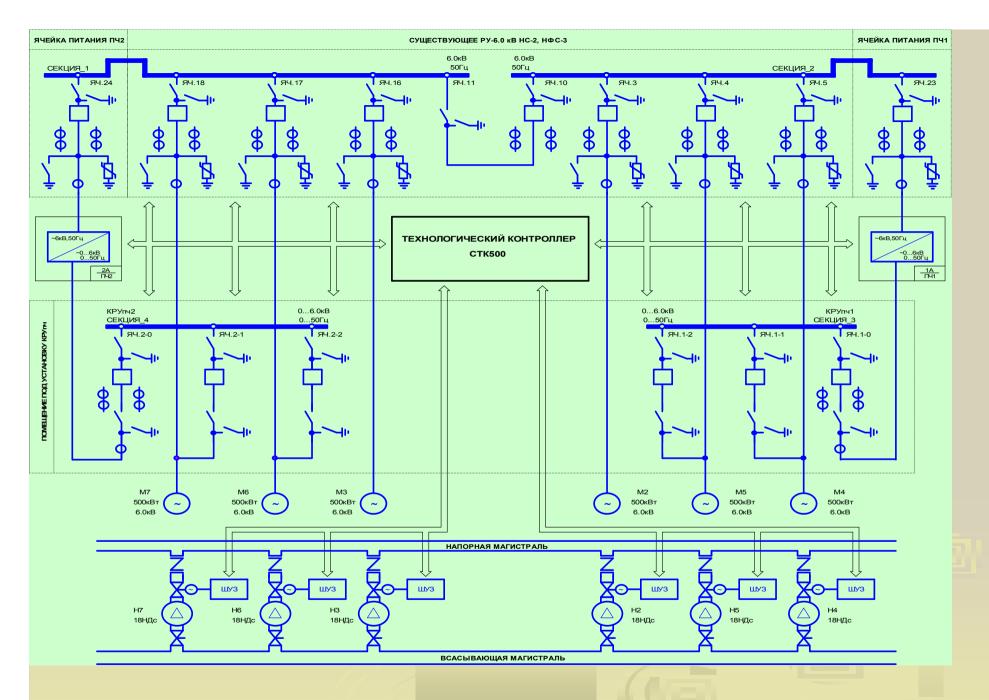
г.Новосибирск (Гортеплоэнерго), ПНС-10 ВПЧА-10кВ-1000кВт индивидуально на каждый НА (6шт), с «байпасом»

В эксплуатации с сентября 2009г.

Схема индивидуального частотного управления

каждым НА (НС-2 НФС-1)




Схема включения ВПЧ «в разрыв» цепей питания каждого НА.

Другим, также технически полноценным, является вариант установки числа ВПЧ по числу одновременно находящихся в работе агрегатов.

Это может быть число агрегатов пикового режима или основного режима работы станции. При этом часть агрегатов будет без индивидуального ВПЧ.

В этом случае имеет смысл использовать третью схему рис.3, обеспечивая тем самым возможность периодической или аварийной смены агрегатов.

По цене и требуемым площадям вариант безусловно «легче» первого.

Следующими по техническому рейтингу вариантами являются варианты с числом ВПЧ меньшим, чем число одновременно находящихся в работе агрегатов.

Здесь могут быть использованы все три схемы включения ВПЧ. Однако в любом случае вариант характеризуется режимом параллельной работы насосных агрегатов с частотным регулированием и без него.

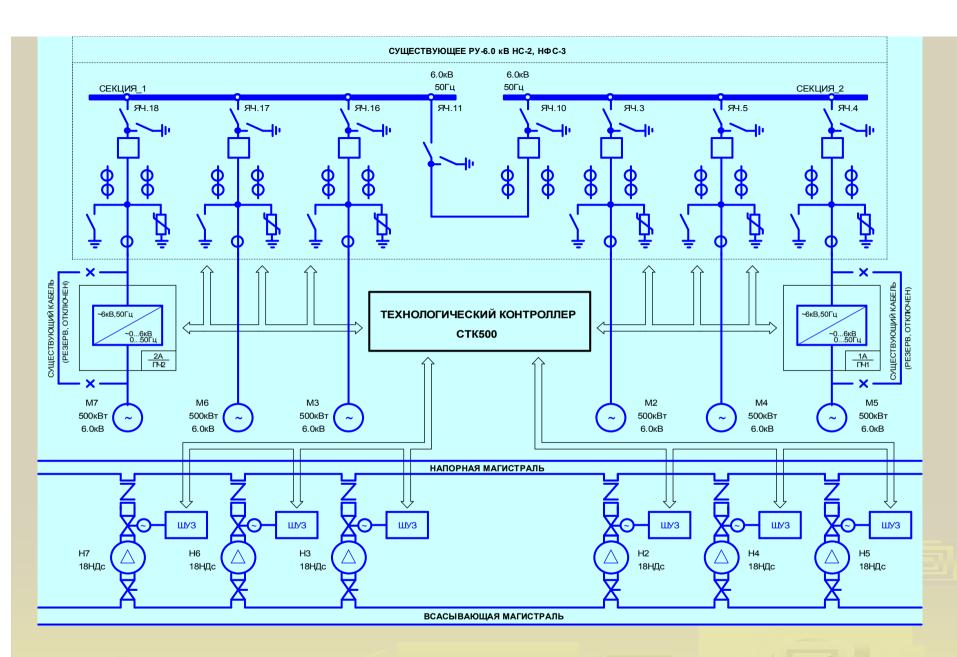
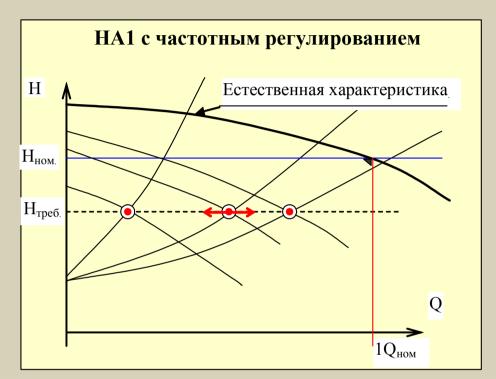
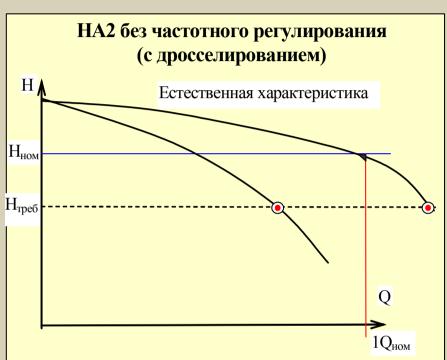
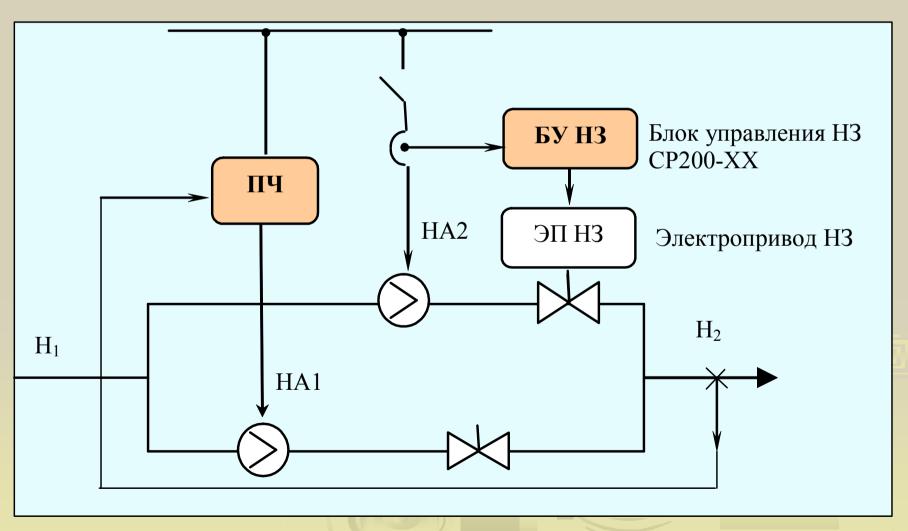




Схема включения ВПЧ «в разрыв» цепей питания *только двух НА*

Параллельная работа Параллельная работа двух НА: один с ЧР, второй с д

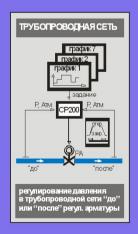


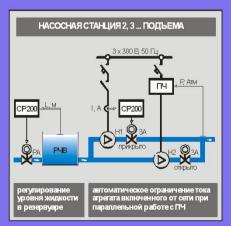
При изменении расхода рабочая точка насоса *НА1 будет перемещаться* по прямой пропорционально изменению расхода,

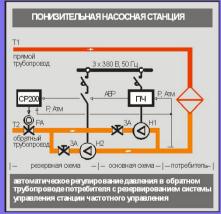
а рабочая точка насоса *HA2 будет зафиксирована* на естественной характеристике в точке, соответствующей H=Hзад.

Функциональная схема управления параллельной работой

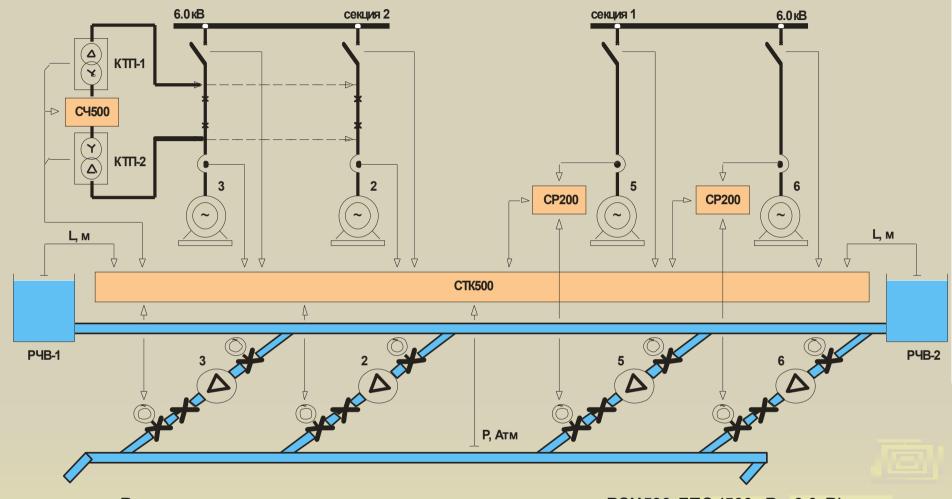
НА с частотным регулированием и без частотного регулирования.






Блоки управления запорнорегулирующей арматурой серии СР200

- Работа с любым типом арматуры
- Замкнутая система авторегулирования заданного технологического параметра
- 7 программируемых суточных графиков
- Автоматическое или ручное управление
- Исполнения силовой схемы управления: контакторное, с ПЧ
- Мощность двигателя: 0,2...7,5кВт, 380 В.



внс, пнс

Высоковольтная станция частотного управления серии ВСЧ500-ДТС (500 кВт, 6.0кВ), установленная на ВНС-4 НФС-3 МУП г. Новосибирска "Горводоканал".

На базе выше рассмотренных преобразователей частоты предприятием ООО «Сибирь-Мехатроника» выпускаются высоковольтные станции частотного управления (ВСЧУ) насосными агрегатами серии ВСЧ500.

BC4500

ВЫСОКОВОЛЬТНЫЕ СТАНЦИИ ЧАСТОТНОГО УПРАВЛЕНИЯ

					Mo	ощнос	тной	ряд в	ысоко	вольт	ных с	танци	й част	готног	о упр	авлен	ия		
СЕРИЯ:	Мощность, кВт	75	90	110	132	250	320	200	630	800	1000	1250	1400	1600	2000	2500	3150	4000	5000
	всч500-дтс					•	•	•	•	•	•	÷							
	ВСЧ500-ВПЧА					•	•	•	•	•	•	•	•	•	•	•	•	•	•
	всч500-впчс									•	•	•	•	•	•	•	•	•	•
		\$1 · ·	ù.	à.					5 7			V=					10	BC	Ч-500

Станции серии ВСЧ500-ДТС

(высоковольтные)

Управление группой НА: до 4

Мощность:

250...1250 кВт, 0,66/10 кВ

(двухтрансформаторная схема)

Технологический параметр:

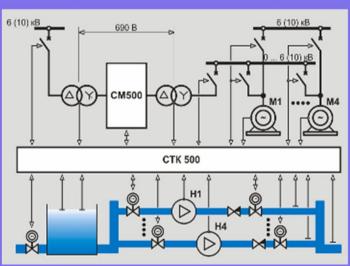
давление, уровень

Схема работы НА:

каскадная, поочередная

Способ переключения двигателей:

автоматический, ручной


Коммутационная аппаратура:

ячейки КСО, КМ

Качество напряжения:

встроенный sin-фильтр

ВНС I, II и III подъемов, ГНС, КНС, ПНС

Станции серии ВСЧ500-ВПЧА

(высоковольтные)

Управление группой НА: до 4

Мощность:

250...5000 кВт, 6 (10) кВ

(однотрансформаторная схема)

Технологический параметр:

давление, уровень

Схема работы НА:

каскадный, поочередный


Способ переключения двигателей:

автоматический, ручной

Коммутационная аппаратура:

ячейки КСО, КМ

ВНС I, II и III подъемов, ГНС, КНС, ПНС

Технологический контроллер СТК500

- Система автоматического управления ТП со сложной структурой технологической цепи
- Объединяет управление основным (НА, СЧУ, СМП) и вспомогательным оборудованием (задвижки, дренаж ...)
- Возможность управления независимыми участками технологической цепи с полным контролем параметров механизмов и систем
- Отображение информации на 17" мониторе (мнемосхема, графики, таблицы)
- Управление процессом по месту оператором или системой АСУ ТП

ВНС I, II подъема, ГНС

г. Благовещенск, Амурский водозабор (ВНС-2), ВСЧ500-ДТС-06-800(кВт)

В эксплуатации с 2006г. Экономия электроэнергии 30% Срок окупаемости 1 г. и 4 мес.

г. Благовещенск, Северный водозабор (ВНС-2), ВСЧ500-ДТС-06-500(кВт)

В эксплуатации с 2006г. Экономия электроэнергии 30% Срок окупаемости 1 г. и 4 мес.

г. Барнаул, КНС, ВСЧ500-ДТС-06-500(кВт)

В эксплуатации с 2007г. Экономия электроэнергии 30% (200т.р./мес.) Срок окупаемости 1 г. и 6 мес.

г. Новосибирск, НФС-3, ВНС-4, ВСЧ500-ДТС-06-500(кВт)

В эксплуатации с 2008г.
Экономия электроэнергии 17%
Экономия воды 20%
Срок окупаемости около 2-х лет.

г.Семипалатинск (Казахстан), ГКНС и ОСК *(нагнетатель),* ВСЧ500-ДТС-06-400(кВт)-групповое управление двумя НА

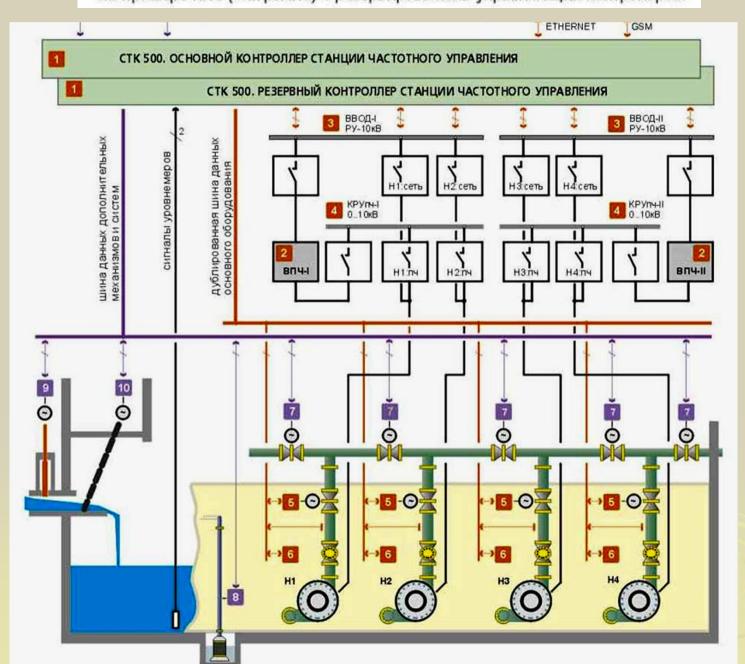
Стадия внедрения-СМР Ожидаемая экономия электроэнергии до 30% Расчетный срок окупаемости около 2-х лет.

г.Семипалатинск (Казахстан),
Водозабор «Свобода» (ВНС-2)
Водозабор «Смычка» (ВНС-2)
Водозабор «Большой» (ВНС-2)
ВСЧ500-ДТС-06-320(кВт)-групповое управление
двумя НА

2009г. Стадия внедрения-СМР Ожидаемая экономия электроэнергии 35-40% Ожидаемая экономия воды 25-30% Расчетный срок окупаемости до 2-х лет.

г.Новосибирск (Гортеплоэнерго), ПНС-10 ВПЧА-10кВ-1000кВт индивидуально на каждый НА (6шт), с «байпасом»

В эксплуатации с сентября 2009г.


Стенд ООО «Сибирь-мехатроника»

D11.1

Спасибо за внимание.

ФУНКЦИОНАЛЬНАЯ СХЕМА

на примере КНС (4 агрегата) с резервированием управляющих контролеров.

